x
uploads/stream time.jpg

stream time 連續開工時間,工作周期。

streamer

These researches will help us to discover changing or developing principle of things , support to decision - making , etc . the thesis addresses several key technical problems of pattern mining and its search based similarity in time series , which covers feature patterns and relationship patterns mining , pattern search based on similarity in time series and stream time series and issues concerning application system implementation oriented to analysis . major contributions of this thesis include : 1 . research of mining feature patterns in time series a novel method is proposed to discovery frequent pattern from time series 本文在分析時間序列特點和實際應用需求的基礎上,針對時間序列的挖掘與相似性查找一些關鍵技術進行了研究,具體包括特征模式挖掘、多序列關聯模式挖掘、相似性模式查找,在線相似性查找以及最終的分析應用系統開發等方面,所做的工作和取得的創新成果體現在以下五個方面: 1 )時間序列特征模式挖掘研究首次提出了一種基于互關聯后繼樹模型的時序特征模式挖掘方法。

This paper analysis the data mining of the single nd multiple streams time series , and draw a conclusion that the relationship between the events of the multiple streams time series are the association patterns dependency patterns , sudden patterns , this paper call them are structure patterns , the existing algorithm have n ' t discuss these patterns , although msdd discussed the dependency patterns , however , it ignored the association patterns , sudden patterns , this paper have a definition of the association patterns , sudden patterns and dependency patterns , and have a complete , frank algorithm called twma ( time window moving and filtering algorithm ) , the peculiarity of this algorithm is that events is listed by the time window , by this way , the relationship of the events is clear 本文將它們統稱為結構模式,而這正是目前其它算法、沒有考慮到的,雖然msdd考慮了事件之間的依賴關系,但它忽略了突變模式,關聯模式等重要的知識表示。本文給出了關聯模式、依賴模式、突變模式的定義,提出了一個比較靈活全面、直觀的挖掘它們的算法:時間窗口移動篩選算法twma ( timewindowmovingandfilteringalgorithm ) 。該算法的一個突出特點是將時間序列事件按時間窗口序列化,使得事件之間的時間關系表示很直觀,該算法能成功地從多流時間序列中發現了事件之間的關系。

We ca n ' t divide the multiple streams time series into singleness times series simply in the research of multiple streams time series , we ' ll dissever the relation between the events of the multiple streams . although the msdd can find the dependency relationship of multiple streams , but it have n ' t the initialization of the events , the express of the time relationship between events is not frank , the cost of the algorithm is expensive ( o ( n5 ) ) , i ca n ' t find much more knowledge in multiple time series , it find the dependency patterns only of the multiple time series , so there need a new more effective , frank , complete algorithm to find the knowledge 研究多流時序不能簡單地將它割裂為單流時序,因為這樣就割裂了數據流事件之間的關系。雖然msdd能夠發現多流時間序列中的依賴模式,但是由于其缺少對數據的初始化、事件之間時間關系的表示不直觀、算法執行的時間空間開銷很大( o ( n ~ 5 ) ) 、不能夠充分發現多流時間序列包含的知識,它只發現依賴關系,因此研究新的,高效,全面的發現多流時間序列事件之間關系的算法成為必要。本文分析了單一和多流時間序列中的知識發現,把多流時間序列事件內部存在的關系表示為:關聯模式、依賴模式、突變模式。

These researches will help us to discover changing or developing principle of things , support to decision - making , etc . the thesis addresses several key technical problems of pattern mining and its search based similarity in time series , which covers feature patterns and relationship patterns mining , pattern search based similarity in time series and stream time series and issues concerning application system implementation oriented to analysis . major contributions of this thesis include : 1 . research of mining feature patterns in time series a novel method is proposed to discovery frequent pattern from time series 本文在分析時間序列特點和實際應用需求的基礎上,針對時間序列的挖掘與相似性查找一些關鍵技術進行了研究,具體包括特征模式挖掘、多序列關聯模式挖掘、相似性模式查找等方面,所做的工作和取得的創新成果體現在以下三個方面: 1 )時間序列特征模式挖掘研究首次提出了一種基于互關聯后繼樹模型的時序特征模式挖掘方法。

4 . research of online similar search in a streaming time series an algorithm on online similar search in a streaming time series is proposed 4 )動態時間序列在線模式的相似性查找研究針對時間序列實時分析的需要,給出了一種動態序列的在線相似性查找算法。

Ptwma is an effective successful algorithm and model to the knowledge discovery of the multiple streams time series Ptwma為分布式,并行控掘多流時間序列提供了一種有效的算法和模型。