x
uploads/integrable.jpg

integrable adj.1.可匯總的,可并合的。2.可聚合的,可并攏的。...

integral

After several decades , people have made great progress both in different kinds of realizations of yangian and in the investigations on quantum integrable models , giving new physical understanding and theoretical results 經過幾十年的發展研究,人們在yangian的各種物理實現和量子完全可積模型的研究方面取得了重要的進展,并給出新的物理理解和理論結果。

By associating the spin vector of the inhomogeneous generalized heisenberg ferromagnet with the binormal to a moving curve in minkowski space , the corresponding equivalent coupled inhomogeneous integrable equation is present 通過將非均勻推廣的海森堡鐵磁鏈的自旋矢量取為閔可夫斯基空間中曲線的次法矢量,得到相應的耦合的非均勻可積方程。

Further they are the near integrable systems . in chapter 1 , we briefly introduce the near integrable systems , and give the background in physics and the developments in mathematics for the quintic and derivative nonlinear schrodinger equations 在第一章緒論中,我們簡要介紹了近可積系統的相關內容,給出了具五次和導數項的非線性schr (

This essay introduces some basic knowledge about integrable ware according to constructivism . and it also presents the detailed classify to microteaching unit , which is an important one of integrable ware , with lots of examples 文章結合數學學科的特點,以建構主義理論為指導,介紹了積件的一些基本知識:積件的定義、特點以及組成。

People have made great progress both in different kinds of realizations of yangian and in the studies on quantum integrable models since 1992 , and have given new physics understanding and theoretical results 自從1992年以來,人們在yangian各種物理實現和量子完全可積模型的研究方面取得了重要的進展,并給出新的物理理解和理論結果。

This paper first discusses the limitation of “ courseware “ to introduce the conception of “ integrable - ware “ . then it puts forward the necessity of building up material databases based on the integrable - ware conception 全文首先討論了課件本身的局限性,引出了“積件”的思想,繼而論述了建立基于積件思想的素材庫的必要性。

This thesis consists of two parts . part i deals with the automorphism group of heisenberg lie algebra and part ii deals with the standard kac - moody algebras and the completely reducibility of integrable modules 本文由兩部分構成:第一部分: heisenberg李代數的自同構群;第二部分:典范kac - moody代數與可積模的完全可約性。

Constucting loop algebra g leads to integrable couplings of the generalized burgers hierarchy , integrable couplings of the mkdv - nls hierarchy and a class of expanding integrable model of dirac hierarchy 又通過構造loop代數,分別得到了廣義burgers方程的可積耦合、 mkdv - nls方程族的可積耦合及dirac方程族的一類擴展可積模型。

Based on this result , convergence of gaussian quadrature formulas for riemann - stieltjes integrable functions on an arbitrary system of nodes on infinite intervals is discussed 應用這個結果,我們討論了關于riemann - stieltjes可積函數f ( x )基于無限區間上的任意節點系的gauss求積公式的收斂性。

The bariev chain is a hubbard - like integrable model . it is relevant to high - tc superconductivity , for there exists hole pair of cooper type in this model Bariev模型是一種類hubbard模型,由于在此模型中單粒子和對粒子跳躍的相互競爭決定了系統的性質,因而可以用來研究高溫超導現象。

More specifically , we combine geometric singular perturbation theory with melnikov analysis and integrable theory to prove the persistence of homoclinic orbits ) dinger方程同宿軌道的存在性,其基本思想方法是基于整體可積理論、 melnikov方法和奇異擾動理論的綜合運用

Quantization of the non - integrable ( chaotic ) systems of dcn vibration and henon - heiles potential were analyzed by the action integrals of periodic orbits 運用周期軌跡的作用量積分對dcn體系及henon - heiles體系的量子化問題進行研究。

Nonholonomic constraint means that the constraint equation contains the time derivative of the systematic generalized coordinates , which are not integrable 非完整約束是指約束中含有廣義坐標的導數,且這些導數不全部可積。

It is studied that the cmc surfaces in the sphere space of dimension 3 by means of integrable system and its spectral transformation is given 利用可積系統的方法研究3維球空間中的常中曲率cmc曲面,并給出了曲面的譜變換。

Firstly , we give a basic notion and basic theory of c - d pair and c - d integrable system and then we study their applications 首先給出了c - d對和c - d可積系統的基本理論,然后是具體研究了它們的應用。

Nonholonomic constraint is the constraint that contains time derivatives of the generalized coordinates of the system and is not integrable 非完整約束是指含有系統廣義坐標導數且不可積的約束。

They are the constructivist theory , systems science theory , integrable ware theory and the characteristics of physics 闡釋課件制作的理論基礎:建構主義學習理論、系統科學理論、積件理論。

The concept of non - integrable phase factors in quantum mechanics is analysed in detail , which is different form integrble phase factors 文章還專門討論了不可積相位的概念及其重要性。

In this paper , we deal with the analogous problems of square integrable polyradial functions space on hn 本文針對h _ n上平方可積柱徑向函數空間,討論了與之相類似的問題