x
uploads/harmonic function.jpg

harmonic function 【數學】調和函數。

harmonic interval

After introducing the conventional edge detection operator and multiscale wavelet edge detection operator , we discussed the well quality of b - spline function > n - class derivative of gauss function n harmonic function and hermite function in wavelet theory and their concrete application in the image edge detection 在對單尺度下的傳統邊緣檢測算子和多尺度小波邊緣檢測算子介紹的基礎上,討論了b樣條、 gauss函數的n階導數、諧波函數以及hermite函數在小波理論中所具有的良好性質,以及它們在圖像邊緣檢測中的具體應用。

The article stated here will give some remarks to the following equation in two cases : for the case > 0 , the equation expresses the eigenvalue of the laplacian while for the case = 0 , it is the existence of nontriv - ial bounded harmonic functions on complete noncompact manifolds 本文中我們主要分兩種情況來討論了關于laplace算子的方程: u + u = 0 , r ~ + { 0 }對應于0 ,是riemann流形上laplace算子的特征值問題,而對應于= 0則是完備非緊流形上非平凡的有界調和函數的存在性問題。

The addition formula of spherical harmonics function of degree n and order 1 is derived using the relations between coordinate varieties after coordinate rotating and the property of the associated legendre polynomial . the relations among the magnetic vector potential , the modified magnetic vector potential and the second - order vector potential ( sovp ) are shown going forward one by one . it is explained that the solutions of electromagnetic fields in different coordinate systems can be transformed and an example having analytical solution is given 利用坐標旋轉后球坐標變量間的關系和連帶勒讓德多項式的性質推導得到了n次1階球諧函數的加法公式;以遞進的方式說明磁矢量位、修正磁矢量位與二階矢量位的關系,寫出了引入二階矢量位的過程;以時諧場矢量邊值問題為例,闡明了不同坐標系下電磁場解的相互轉化原理,給出了一個解析解的轉化例子;在球坐標下,引入了較球矢量波函數更普遍的兩類矢量函數,給出了其在球面上的正交關系。

Firstly , in spherical coordinate system , the sovp formulation for the time - harmonic electromagnetic fields of the current dipole in conductive infinite - space is derived , using reciprocity theorem and transforming relations between special functions . then , selecting appropriate coordinate system , using superposition principle , the boundary - value problem of modified magnetic vector potential on the problem of a time - harmonic current dipole in spherical conductor is solved and analytical solution is obtained . finally , by means of the addition formulas of legendre polynomial and spherical harmonics function of degree n and order 1 , the analytical solution in spherical coordinate system specially located is transformed into that in spherical coordinate system arbitrarily located 首先利用特殊函數間的轉化關系和互易定理推導得到了無限大導體空間中球坐標下時諧電流元電磁場的二階矢量位形式:然后利用疊加原理,選擇合適坐標系,求解了導體球中時諧電流元的修正磁矢量位邊值問題,得到了問題的解析解;最后依據不同坐標系下電磁場解的轉化原理,借助勒讓德多項式和n次1階球諧函數的加法公式,將坐標系特殊安放時的電磁場解析解變換到坐標系一般安放時的解析解,給出了球內電場和球外磁場的并矢格林函數。

Through the analysis of the deduction process of harmonic function model , it is illustrated that some hypotheses in the deduction process are unreasonable and the harmonic function can not reflect the objective regularity of the vertical crust movement , so that it isnt an effective method to compile isoline map of the vertical crust movement rate 對有關文獻提出的“地殼垂直運動調和分析”模型的建立過程作了全面分析,指出:該模型建立過程中所做的一些處理是不合理的,由此建立的模型不是地殼垂直運動規律的客觀反映,因而尚不足以成為編制地殼垂直運動速率面等值線圖的可靠手段。

In chapter 3 , we will estimate the first eigenvalue of laplacian from below on manifolds with a little negative curvature . in chapter 4 , we will prove the existence of bounded nontrivial harmonic functions on some classes of complete manifolds which will generalize the results of s . y . cheng ' s 在第三章,我們將給出具有小負曲率的流形上laplace算子的第一特征值的下界估計;第四章,我們會給出一類完備非緊流形上非平凡的有界調和函數的存在性,推廣了s . y . cheng的結果。

The north border of the basement , extended from west to east along the north latitude 38 , this latitude structure zone is part of the zone in the middle of ordos basin along the north latitude 38 , this is caused by the rate of earth rotation , according with the condition of global harmonic function 壓陷北界沿北緯38帶東西向展布,該緯向構造是沿鄂爾多斯盆地中部38帶分布的緯向構造帶的一部分,是由地球自轉速率變化引起,符合全球協和函數的條件。

An extension form of liouville ' s theorem about analytic functions for general harmonic functions is proved 摘要證明復變函數中的劉維爾定理在調和函數中的一種推廣。

Positive harmonic functions on a class of complete riemannian manifolds 流形的正調和函數