x
uploads/eigenfunction.jpg

eigenfunction n.【數學】特征函數,固有函數。

eigenvalue

This paper has studied the wavefunction expanded in terms of the two - dimensional harmonic oscillator eigenfunction through calculating the energy of the ground state , the energy of the first excited state and the oscillator strength in a square wire with finite barriers and studied its application in these fields . the most remarkable advantage of this wavefunction is that it can satisfy the continuity of the function and of its derivative divided by the band - mass and it is convenient to calculate some physical magnitudes because the number of the terms is small 本文通過計算有限深方形量子線中單電子的基態能、第一激發態能和振子強度研究了以二維諧振子本征函數為基展開的波函數以及它在這些問題中的應用,此波函數的顯著優點是:在邊界處滿足波函數的連續性條件和粒子流的守恒條件,并且展開項數少,計算方便。

In this paper , the wavefunction is expanded in terms of the two - dimensional harmonic oscillator eigenfunction and the mismatch of the effective mass is considered . we calculate the energy of the ground state , the energy of the first excited state and the oscillator strength of the single electron in a square quantum wire with finite barriers 本文選取了以二維諧振子本征函數為基展開的波函數,并且考慮了有效質量的失配性,計算了有限深方形量子線中單電子的基態能,激發態能和振子強度。

And this result is extended to the eigenfunction of maxwell ' s equations . then the mode series of step index planar dielectric waveguide and circular optical fiber are studied , including propagation modes and radiation modes . as application , there are three examples : the emergent wave from planar waveguide to free space , the transverse and longitudinal coupling of waveguide and the measurement of scalar gratings 由于從一個空間到另外一個空間的光束傳播伴隨著界面上各個模式能量之間的耦合,作為應用,本文介紹了完備性在三個情況下的應用:平面波導出射光束的衍射性質、波導的橫向和縱向耦合以及標量光柵的測試。

This thesis tries to modify the perfect set of waveguide mode theory and gives several examples of its application . firstly , from the functional analysis , the eigenfunction series of vectorial partial differential operator is studied . the property of complete space is gotten 本文首先從泛函分析的方法出發,研究了矢量偏微分算子本征函數系的性質,得到了矢量偏微分算子正交完備歸一化本征函數的存在證明,研究了maxwell方程組的情況,證明了電磁場在均勻和非均勻介質條件下的正交本征函數系的完備性質。

The governing equations of the problem are derived in hamiltonian form by using variable substitution and variational principle . then the methods of separation of variables and conjugate symplectic eigenfunction expansion are developed to solve the equations of plate bending problem . the result can be derived by analytical method 在平面彈性問題中,由變量代換及變分原理,方程可導向哈密頓體系,從而通過分離變量法及共軛辛本征函數向量展開法,以解析的方法來進行求解。

The energy eigenvalue , eigenfunction , matrix elements of coordinate and momentum operators in energy representation , and evolution operator for a two - dimentional coupled oscillator are presented by using the general linear quantum transformation theory 摘要運用廣義線性量子變換理論,給出一類二維耦合量子諧振子的能量本征值、本征函數、坐標和動量算符在能量表象中的矩陣元及演化算符。

In the method , rendering level to correlative characteristic is enormously raised with three parameters , which are image eigenfunction originated , style of drawing primitives selected , and quantity of drawing primitives confirmed 在該方法中,建立圖像的特征函數,選取繪圖圖元的類型,確定繪圖圖元的數量,用上述的三個參量可以大大提高圖像相關特征信息的再現能力。

When target manifold is r , . if u is a function of finsler manifold , we can define laplace operator , it is well - defined . if u is called the eigenvalue of the laplacian a and u is called the corresponding eigenfunction 眾所周知,對于黎曼幾何,調和映射是調和函數的推廣,且當目標流形為r時,二(喲二撇el ] .因此對于尸‘ nsler流形m上的函數。可以定義laptace算子為。

His research interests include elementary particles , field theory , high energy phenomenology , dissipative systems and especially their eigenfunction representation and application to optics , gravitational waves and other open systems 楊教授多年來從事理論物理學研究,包括基本粒子、場論、高能唯象、耗散系統及本征態展開,以及對光學和引力波等開放系統的應用。

By using the eigenfunction expansion technique , a one - dimension finite element formulation is then developed to determine the eigensolutions to the 2d heat conduction problem at the crack tip , which discretizes the sectorial domain circumferenially 利用特征方程展開方法,可獲得分析裂紋尖端處二維熱傳導特征解的一維有限元列式。

In 1990s based on the eigenfunction method of representation theory of groups , a new method , the symmetrized boson representation ( sbr ) method , was brought forward 90年代,陳金全等人在點群的表示理論上提出了一種新的方法,對稱化玻色表象方法( sbr ) 。

< uk > since we get continuous rather than discrete allowed values for e 0 , the positive - energy eigenfunctions are called continuum eigenfunction . < / uk > < uk >由于對e 0得到連續的而非分立的允許值,正能量的本征函數叫做連續譜本征函數。 < / uk >

In chapter 8 solutions by eigenfunction expansion to 1 - dimensional problems of mechanics and 2 - dimensional problems of theory of elasticity are researched 第八章研究1維力學和2維彈性力學問題的特征函數展開解法。

Comparison of modal function expansion method with eigenfunction expansion method for prediction of hydroelastic responses of vlfs 預報超大型浮體水彈性響應的模態函數展開方法和特征函數展開方法比較

The solutions of eigenvalue and eigenfunction for three non - self - adjont situation are summrized 對三種非自共軛情形下的本征值和本征函數的求解方法進行了歸納總結。

The eigenvalue and eigenfunction of a coupled quantum oscillator 二維耦合量子諧振子的本征值和本征函數

Generalized eigenfunction expansion concerning normal operators 與正常算子相關的廣義特征函數展開

( 2 ) morphology of stationary state eigenfunction 定態波函數形態特征。

The parity of the eigenfunction is found by determining what happens to the wave function when r is replaced by -r . 本征函數的宇稱可以這樣確定:當r用r代替時看波函數的變化。