x
uploads/dirac.jpg

dirac n.迪拉克〔姓氏〕。

dirdum

A class of exact solutions of the dirac equation are obtained for an electron in the electromagnetic field of a wave guide formed by two pairs of hyperbolic cylinders 摘要研究了位于由兩對雙曲柱面構成的波導管電磁場里的單電子的性質,得到了單電子在場中狄拉克方程的新一類精確解;計算了極化算符的本征函數。

Then we construct the corresponding transfer matrix to determine the rtt integrability of dirac oscillator and gain the conserved quantities of the system according to quantum determinant 接著構造出相應的整體轉移矩陣,確定dirac諧振子在rtt意義下的量子可積性的問題,并由量子行列式確定體系的守恒量族。

Midway up the slope , however , i staggered to a halt , gasping in the rarefied air , well before i reached the heights where the equations of einstein and dirac would have made sense 登到山坡的一半時,我搖搖晃晃的停下來,呼吸稀薄的空氣,這時,距離我能夠理解愛因斯坦或狄拉克的方程式的高度還相差很遠。

Midway up the slope , however , i staggered to a halt , gasping in the rarefied air , well before i reached the heights where the equations of einstein and dirac would have made sense 可惜才到半山腰,便開始步履踉蹌;空氣稀薄,使我氣喘吁吁,不得不停下腳步,而愛因斯坦和狄拉克的方程式卻仍舊遠在高處。

By resorting to the integral identity and the residue method , asymptotic estimations of the dirac operator eigenvalue are considered and eigenvalue ' s trace identities are obtained 借助于一個積分恒等式,采用留數方法,對dirac算子的特征值進行了估計,得到了在各種情形下的特征值的漸近跡公式。

Now that the dirac procedure is not quite appreciated to quantize the boundary model under consideration , to search for a new method to solve this problem becomes our main task in the forthcoming chapters 這樣,分析并提出解決這一問題的更為恰當的新方法就成為我們后面章節中的主要研究任務。

By resorting to the residue method , the asymptotic formulas for the eigenvalues and the expansion theorems of dirac eigenvalue problems are proved under the self - adjoint and non - self - adjoint boundary conditions 本文用留數方法證明了自伴和非自伴的dirac算子的特征值估計和特征展開定理。

The relativistic multi - configuration dirac - fock ( mcdf ) method is one of the best widespread used methods in the calculation of atomic structures and properties 多組態dirac - fock ( mcdf )方法是一種在相對論理論框架下發展起來的廣泛用于計算原子結構和性質的理論方法。

Constructing an entire function a ; ( a ) , the zeros of which are the eigenvalue of dirac eigenvalue problem with general two points “ linear algebra boundary conditions 構造了一個整函數( ) ,其零點集合與具有一般兩點邊界條件的dirac特征值問題的特征值集合重合。

We not only obtain the old conclusions but also generalize some of them . in the section two we study the left invariant dirac structure on poisson groupoids 本章的第二節實際上是第一節的直接應用,主要討論了泊松群胚上的左不變divac結構。

The discussion of pullback dirac structures for lie bialgebroid and lefe invariant dirac structures on poisson groupoid is our purpose in this paper 本文主要目的是借助極大迷向子叢對偶特征對來研究拉回dirac結構和泊松群胚上的dirac結構。

About dirac eigenvalue problem with general two points “ liner algebra , corresponding operator of which often is non - self - adjoint operator 對于一般兩點線性(代數)邊界條件下的dirac特征值問題,相應的算子一般說是非自伴的。

The asymptotic estimations of solution of initial value problem are obtained for dirac equation by use of the transformation matrix operator in this thesis 本文運用平移算子,得到了dirac方程初值問題解的漸近估計。

In this paper , we mainly apply the theory of yangian to relativistic area , studying dirac oscillator by using yangian 本論文主要是將yangian的理論應用到相對論的范疇內,利用yangian手段來研究dirac諧振子體系。

We introduce the conception of the linear dirac structure and similar dirac structure in the first section 第一節引入了線性dirac結構和似dirac結構的概念,并分析了它們特殊情況與泊松結構與辛結構之間的聯系。

Antimatter has been part of physics since 1927 when its existence was predicted by the british physicist paul dirac 當英國的物理學家保羅迪拉克預言反物質存在的時候,從1927年以后它就成為物理學的一部份。

For the expansion theorems of self - adjoint dirac operator , it is difficult to prove it by using the method of integral equation 對于自伴dirac算子的特征展開定理的證明,用積分方程方法有一定的困難。

For the non - self - adjoint dirac operators , there are plentiful content in the problems of eigenval ue expansion problems 從所得結果來看,對于非自伴dirac算子來說,特征展開問題具有相當豐富的內容。

Meanwhile , we will show the deformation lie bialgebroid . these are the necessary preparations for the later discussion 這些都為本文第三節的poisson - nijenhuis流形上dirac結構及其性質做了鋪墊。