x
uploads/cons.jpg

cubic system 【物理學】立方晶系。

cubical

In this dissertation , we study the global topological classification and coefficient conditions of the plane homogeneous fifth polynomial differential system the main techniques used in this thesis includes the methods of the global structure and coefficient conditions of the plane homogeneous quadratic and cubic system mentioned in the paper [ 1 ] of professor ye yanqian , and the paper [ 2 ] of professor li xue min , also includes the idea to high - order critical point of professor zhang zhifen , lu yulin and han yuliang etc . due to the degree of polynomial in the right of equal - sign crease , when we discuss the global structure , the more special directions , the more difficulty in drawing phase portraits of this system 本文主要討論一類平面齊五次多項式微分系統的全局拓撲結構及系數條件。借鑒了文獻[ 1 ]葉彥謙教授對平面齊二次系統的全局結構及系數條件和文獻[ 2 ]李學敏教授對平面齊三次系統的全局結構及系數條件的研究方法,同時綜合了張芷芬教授、陸毓麟教授、韓玉良教授等人對高次奇點的研究思想進行討論。這樣,由于等號右邊多項式次數的增加,討論系統的全局結構時,可能出現的特殊方向就會增加,在作全局相圖時,難度增大了。

In the last chapter , by introducing the isochronous center of real systems into complex planar and defining complex center and complex isochronous center , a concise linear recursion formula for period constants is given , necessary and sufficient conditions of complex isochronous center ( the time - angle difference theorem ) proved , conditions of real systems with linearizable center and saddle treated unitedly and the isochronous center conditions discussed fully for a class of real planar cubic systems 在第七章,通過把實系統等時中心引入復平面研究,定義了復中心和復等時中心,給出了等時中心周期常數計算的簡明的線性遞推公式,證明了等時中心判定的充分必要條件(時角差定理人統一地處理了實系統具有可線性化的中心和鞍點條件,并對一類實平面三次系統的等時中心條件進行了完整研究

In the second chapter , we obtain the necessary and sufficient condition where the cubic kolmogorov type system is bounded if homogeneous polynomials of degree 3 are relatively prime . and we obtain there are only four behaviours of the trajectories near the equator of the bounded cubic system if the homogeneous polynomials of degree 3 are relatively prime . in the third chapter , we study the existence and nonexistence of limit cycle for a class of bounded cubic systems 第一章為引言;第二章,我們得到了齊三次項互素時三次kolmogorov型系統有界的充分必要條件及其在赤道上孤立奇點附近軌線的分布情況有且僅有四種;第三章,我們研究了一類有界三次kolmogorov型系統極限環的存在性與不存在性。

By structure the bounded cubic systems in the plane , we prove that : 1 ) the system ( 1 ) have distribution of critical point with 5 - 4 ( 5 critical points with index + 1 and 4 critical points with index - 1 ) , 3 - 2 , 2 - 1 , + 1 ; 2 ) the bounded cubic systems in the plane which has only one critical point with index + 1 have at least 11 structures ; 3 ) the distribution of finity critical points of bounded cubic systems with same topological structure near the equator have different struction 摘要通過構造有界的平面三次系統,證實了( 1 )其有限奇點的5 4 ( 5個奇點指標為+ 1 ,另4個奇點指標為1 ) 、 3 2 、 2 1 、 + 1四種分布均可實現; ( 2 )僅有一個指標為+ 1的有限奇點的有界三次系統至少有11種類型; ( 3 )赤道附近軌線拓撲結構相同的有界三次系統它們有限奇點的分布可以有不同類型。

The integrability conditions and coefficient conditions for the appearance of 5 and 6 limit cycles from the neighborhood of the equator are obtained . an example of cubic system with 6 limit cycles bifurcating from the equator is given for the first time 同時計算出系統的前6個赤道環量,得到了系統在赤道鄰域的可積性條件及在赤道附近分支出5個和6個極限環的系數條件,從而首次給出了一個平面三次系統在赤道附近分支出6個極限環的計算實例

At the same time , the first 8 focus quantities , center conditions and center integral are given for a cubic system and a computational example of cubic systems with 10 saddle quantities presented for the first time 同時給出了一類三次系統的前8個焦點量及中心條件和中心積分,首次給出了一個具10階細鞍點的三次系統計算實例。

By translating this real cubic system into a complex planar system , an applicable linear algebraic recursion formula of the equator and the first 6 quantities of the equator are given 將這類實三次系統轉化為復平面系統研究,給出了系統赤道環量的易于計算的線性代數遞推公式。

The sufficient conditions for the non - existence , existence and uniqueness of limit cycle are obtained for the cubic system 得到了該系統不存在極限環和存在惟一極限環的條件。

In chapter 3 , the stability and bifurcation of the equator of a cubic system are investigated 在第三章中,我們研究一類三次系統的赤道環的穩定性和極限環分支問題。

In this paper , the problem of limit cycle for a cubic system is studied 摘要討論三次系統(方程式略)的極限環問題。

A new algorithms and matrix simplification of a center - focus cubic system 焦點型全三次系統參數化簡與新矩陣法

On the number and distributions of limit cycles in a cubic system 一類三次系統極限環的個數與分布

Study on a class of cubic system with algebraic solutions 一類具有拋物線解的三次系統的定性研究

The global structure and bifurcation for a class of cubic system 一類三次系統的全局結構和分支