x
uploads/bilevel.jpg

bilevel n.兩層平房〔第二層入口低于地面〕。

bilge

Details are as follows : we deal with properties of bilevel linear programming and prove the equivalence of bilevel linear programming and optimization over the efficient set . a class of multi - objective tow level programming , i . e . the upper - level is single objective and the lower - level is linear multi - objective , is mainly discussed . it can be converted into the optimization over the efficient set with parameter and an algorithm is given with its finite termination being proved ; when the upper - level is linear function , an exact penalty function algorithm is given 分層(分級)遞階系統是社會組織管理的主要形式,多層規劃是研究這類系統優化問題的基本模型,其鮮明的實際背景和廣泛的應用前景引起了人們的廣泛關注,成為一個新興的活躍的研究領域,本論文研究了二層規劃中的若干問題,主要工作如下:討論了二層線性規劃的性質,并證明了它與零有效集上優化問題的等價性;對一類二層多目標規劃(上層為單目標規劃、下層為線性多目標規劃的問題)進行了探討,將其轉化為含參變量的有效集上的優化問題,進而給出了一種算法,并證明了該算法的有限終止性;當上層為線性單目標時,給出了一種罰函數方法

The model of bilevel programming under uncertainty is converted to some linear programming models on uncertain parameters based on the theory of multi - parametric linear programming , and one of its optimal solution chosen from the worst cases is obtained by using the pessimistic principle of uncertain decision methods 摘要基于多參數線性規劃理論,將不確定型二層線性規劃問題轉化為多個關于不確定參數的線性規劃問題,利用不確定型決策方法中的悲觀準則,從最不利的結果中選擇最有利的結果,從而得到不確定型二層線性規劃的最優解。

For the problem ( nfbp ) , we study two particular types : one can be transformed into concave bilevel programming , and the other can be transformed into convex bilevel programming , we study their own properties and various necessary and sufficient conditions to admit an exact penalty f unction formulation 對此類問題用不同的方法具體研究了分別可轉化為凹雙層規劃和凸雙層規劃的兩種特殊的非線性分式雙層規劃問題,分別給出了這兩類特殊非線性分式雙層規劃具有恰當罰函數的充要條件以及他們各自的一些性質。

In section 2 , a certain linear fractional bilevel programming problem ( lfbp ) is introduced and studied in which the leader ' s objective function is a linear fractional function and the leader ' s constraints are linear , and the follower ' s programming is a linear programming with parameters . it is proved that , under certain conditions , the existences of the optimal solution to the problem ( lfbp ) . under a fairly week condition , some results are explored concerned with an exact penalty function formulation of the problem ( lfbp ) 首先給出了一些預備知識,并證明了在一定的條件下,問題( lfbp )解存在;然后在較弱的條件下給出了問題( lfbp )的一些有關恰當罰函數的結果;接著總結了問題( lfbp )的一些有關lagrange對偶的結果;最后利用例子說明了前面給出的結果,并通過例子說明所用的假設條件確實比現有常用的假設條件更弱。

For affirmming holding this property , the existing common assumptions are that p is bounded or the leader ' s objective function is bounded from below over p , etc . these assumptions are not the necessary and sufficient conditions for this property to hold , and also p is not the feasible solution set for the leader ' s programming of the problem , so such assumptions are quite strict , for the fractional bilevel programming problem , literatures concerned with the exact penalty function formulation are few 為了保證這一性質,一般就要求假設允許集p有界或者外層目標函數在p上有下界。而允許集p并非是所研究問題的外層規劃的可行集,上述有界性假設也并非是上述性質存在的充要條件,這樣的假設條件是比較嚴格的。對于分式雙層規劃問題的恰當罰函數的研究則少之又少了。

In section 1 , first , we state plainly that the bilevel programming problem is a type of mathematical model to represent a certain bilevel decision - making problem . then , we summarize the extensive applied fields and prospects of the bilevel programming problem . last , we introduce stressly the known research results and the work we do on this problem 第一節引言部分先簡單地論述了雙層規劃問題是對一類特殊的雙層決策系統的描述;然后綜述了雙層規劃問題廣泛的實際應用背景及前景;最后著重介紹了迄今為止已有的一些雙層規劃的主要研究成果和本文所做的一些工作。

To date , in the study of the common linear bilevel programming prob - lem to admit an exact penalty function formulation , it is required usually that the optimal value achieves at some , vertex of a permissible set p , the set p consisted of the vectors which conformed to the leader ' s and the follow ' s constraints 迄今為止,對于一般的線性雙層規劃問題的恰當罰函數的研究,通常都要求問題具有最優值可以在允許集p的某個極點處達到這一性質。這里允許集p是指滿足問題( lfbp )上下兩層中所有的不等式約束的變量的集合。

The thesis deals with a certain fractional bilevel programming problem ( fbp ) . it concerns several particular different programming problems . necessary and sufficient conditions are presented for these problems to admit an exact penalty function formulation 本文研究一類分式雙層規劃問題( fbp ) ,分情況討論了幾種特殊分式雙層規劃問題的性質和某類恰當罰函數存在的充分必要條件。

In the paper , we generalize and improve the subject investigated and the assumptions being used , while achieving similar results via the combination of the methods and techniques which are used to fractional programming and bilevel programming study 本文在研究對象和所用假設條件方面都做了一些推廣和改進,結合運用分式規劃和雙層規劃的研究方法和技巧,得到了類似的結果。

In section 4 , a type of multiple - objective fractional bilevel programming problem is introduced , which only the follower ' s function is multiple - objective , an exact penalty function formulation for such a problem is also proposed 第四節研究了一類外層為分式單目標,內層為線性多目標的多目標分式雙層規劃問題,也給出了它的一個恰當罰函數,推廣了前兩節的結果。

Sensitivity analysis in bilevel multiobjective optimization with perturbational parameters in lower level is considered , by using sensitivity analysis of set - valued optimization 摘要借助集值優化問題的靈敏度分析,討論了上層無擾動,下層帶擾動參數的二層多目標最優化問題的靈敏度分析。

And then a simple effective algorithm for the vqbp is proposed based on the relationship between the optimal solutions of the two value - type bilevel programming problems 然后根據兩個雙層規劃的最優解和最優目標值之間的關系,提出一種簡單有效的算法來解決非增值型凸二次雙層規劃間題。

We first transform the vqbp into another value - type bilevel programming problem , in which there is only one unconstrained quadratic sub - program in the lower - level 首先利用數學規劃的對偶理論,將所求雙層規劃轉化為一個下層只有一個無約束凸二次子規劃的雙層規劃問題。

Wang guangmin , wang xianjia , wan zhongping , a globally convergent algorithm for a class of bilevel nonlinear programming problem , applied mathematics and computation , 2007 , 188 : 166 - 172 王廣民,王先甲,萬仲平,二層線性規劃的自適應遺傳算法, (投應用數學與力學)

In this paper , we focus on bilevel programming problem with a common decision variable in the upper level and lower level programming 摘要主要討論上下層具有共同決策變量的一類二層規劃問題的求解方法。

Chaos genetic algorithm method for a class of nonlinear bilevel mixed integer - programming problem 基于混沌遺傳算法的一類非線性兩層混合整數規劃問題求解

A certain nonlinear fractional bilevel programming problem ( nfbp ) is studied in section 3 第三節研究了一類非線性分式雙層規劃問題( nfbp ) 。

A new genetic algorithm for nonlinear bilevel programming problem and its global convergence 解非線性兩層規劃問題的新的遺傳算法及全局收斂性

Method for bilevel and multi - pass printing large format image based on multitoning technique 基于多級半色調技術的大幅面圖像二級多遍輸出方法